Comment traduire «0 est un diviseur de 89 - 0 is a divisor of 89»

Traduction

0 is a divisor of 89

Jeux dAsie du Sud-Est de 1973

La compétition a réuni des athlètes provenant de sept pays. Singapour, pays organisateur, est la nation qui obtient le plus de médailles. Cependant cest la Thaïlande qui remporte le plus dépreuves:

Instituto Nacional de Estatística

L Instituto Nacional de Estatística est lorganisme officiel portugais chargé de la collecte, de la production et de la publication des statistiques.

Estime de soi

L’ estime de soi est, en psychologie, un terme désignant le jugement ou lévaluation faite dun individu en rapport à sa propre valeur. Lorsquun individu accomplit une chose quil pense valable, celui-ci ressent une valorisation et lorsquil évalue ses actions comme étant en opposition à ses valeurs, il réagit en "baissant dans son estime". Selon certains psychologues, lexpression est à distinguer de la "confiance en soi" qui, bien que liée à la première, est en rapport avec des capacités plus quavec des valeurs.

Il est de retour

Il est de retour est un bestseller satirique allemand de Timur Vermes mettant en scène Adolf Hitler en 2011.

Estação Primeira de Mangueira

Le Grêmio Recreativo Escola de Samba Estação Primeira de Mangueira est une école de samba de Rio de Janeiro, lune des plus anciennes et des plus traditionnelles. Elle a été fondée le 28 octobre 1928, au morro da Mangueira, près du quartier Maracanã, par Carlos Cachaça, Cartola, Zé Espinguela, entre autres. Elle a été à lorigine de plusieurs innovations dans le défilé de samba du Carnaval. Ses couleurs sont le vert et le rose et son nom provient du fait quelle était la première station ferroviaire à partir de la gare centrale où la samba était présente. Lécole de samba de la Mangueira a été fortement associée à Jamelão en, chanteur officiel des parades carnavalesques de lécole pendant 57 ans de 1949 à 2006 et figure importante de la samba carioca. Lécole a remporté le carnaval de Rio 2016 avec un défilé rendant hommage à la chanteuse Maria Bethânia. Entre les deux tours de lélection présidentielle, est choisi le samba enredo qui représentera Mangueira au carnaval 2019. Les paroles sont un hommage à Marielle Franco.

Estanys de Perafita

Estany provient du latin stagnum "étendue deau" qui a également donné estanque en espagnol et "étang" en français. Perafita est formé de laccollement de pera et fita. Pera provient du latin petra "pierre" et constitue une forme archaïque du catalan pedra tandis que fita signifie en catalan "borne". Il sagit donc dune pierre marquant une limite, dans ce cas celle entre lAndorre et lAlt Urgell.

El Prat Estació (métro de Barcelone)

El Prat Estació est une station de métro espagnole de la ligne 9 du métro de Barcelone. Elle est située au nord de la ville dEl Prat de Llobregat. commune de la comarque de Baix Llobregat dans la province de Barcelone en Catalogne. Mise en service en 2016, cest une station de la Transports Metropolitans de Barcelona TMB.

Estrecho (métro de Madrid)

La station se situe entre Tetuán au nord et Alvarado au sud. Elle est établie sous lintersection des rues Bravo Murillo et Francos Rodríguez, dans larrondissement de Tetuán.

LGV périphérique Est de Hainan

La LGV périphérique Est de Hainan") est une ligne à grande vitesse reliant les villes de Haikou ou nord de lîle et province de Hainan à Sanya dans son Sud en suivant la rive Est de lîle. Elle a ouvert le 30 décembre 2010 et comporte 15 stations. La ligne est complémentaire de la LGV périphérique Ouest de Hainan qui a ouvert le 30 décembre 2015.

Estoria de España

La Estoria de España est le nom dune compilation historiographique entreprise par le roi Alphonse X le Sage de Castille à la fin du XIII e siècle, en même temps que la General estoria. Loeuvre se proposait de relater lensemble des évènements de lhistoire dEspagne depuis les origines jusquau règne dAlphonse X. Il sagit dune compilation dune importance littéraire et politique capitale, vouée à connaître un succès dune ampleur considérable durant tout le Moyen Âge ibérique.

Table of divisors

The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m, for which n / m is again an integer which is necessarily also a divisor of n. For example, 3 is a divisor of 21, since 21/7 = 3 and 7 is also a divisor of 21. If m is a divisor of n then so is − m. The tables below only list positive divisors.

Clifford's theorem on special divisors

In mathematics, Cliffords theorem on special divisors is a result of William K. Clifford on algebraic curves, showing the constraints on special linear systems on a curve C.

Divisor

In mathematics, a divisor of an integer n {\displaystyle n}, also called a factor of n {\displaystyle n}, is an integer m {\displaystyle m} that may be multiplied by some integer to produce n {\displaystyle n}. In this case, one also says that n {\displaystyle n} is a multiple of m. {\displaystyle m.} An integer n {\displaystyle n} is divisible by another integer m {\displaystyle m} if m {\displaystyle m} is a divisor of n {\displaystyle n} ; this implies dividing n {\displaystyle n} by m {\displaystyle m} leaves no remainder.

Exceptional divisor

In mathematics, specifically algebraic geometry, an exceptional divisor for a regular map f: X → Y {\displaystyle f:X\rightarrow Y} of varieties is a kind of large subvariety of X {\displaystyle X} which is crushed by f {\displaystyle f}, in a certain definite sense. More strictly, f has an associated exceptional locus which describes how it identifies nearby points in codimension one, and the exceptional divisor is an appropriate algebraic construction whose support is the exceptional locus. The same ideas can be found in the theory of holomorphic mappings of complex manifolds. More precisely, suppose that f: X → Y {\displaystyle f:X\rightarrow Y} is a regular map of varieties which is birational that is, it is an isomorphism between open subsets of X {\displaystyle X} and Y {\displaystyle Y}. A codimension-1 subvariety Z ⊂ X {\displaystyle Z\subset X} is said to be exceptional if f Z {\displaystyle fZ} has codimension at least 2 as a subvariety of Y {\displaystyle Y}. One may then define the exceptional divisor of f {\displaystyle f} to be ∑ i Z i ∈ D i v X, {\displaystyle \sum _{i}Z_{i}\in DivX,} where the sum is over all exceptional subvarieties of f {\displaystyle f}, and is an element of the group of Weil divisors on X {\displaystyle X}. Consideration of exceptional divisors is crucial in birational geometry: an elementary result see for instance Shafarevich, II.4.4 shows under suitable assumptions that any birational regular map that is not an isomorphism has an exceptional divisor. A particularly important example is the blowup σ: X ~ → X {\displaystyle \sigma:{\tilde {X}}\rightarrow X} of a subvariety W ⊂ X {\displaystyle W\subset X}: in this case the exceptional divisor is exactly the preimage of W {\displaystyle W}.

Relative effective Cartier divisor

In algebraic geometry, a relative effective Cartier divisor is roughly a family of effective Cartier divisors. Precisely, an effective Cartier divisor in a scheme X over a ring R is a closed subscheme D of X that is flat over R and the ideal sheaf I {\displaystyle I} of D is locally free of rank one. Equivalently, a closed subscheme D of X is an effective Cartier divisor if there is an open affine cover U i = Spec ⁡ A i {\displaystyle U_{i}=\operatorname {Spec} A_{i}} of X and nonzerodivisors f i ∈ A i {\displaystyle f_{i}\in A_{i}} such that the intersection D ∩ U i {\displaystyle D\cap U_{i}} is given by the equation f i = 0 {\displaystyle f_{i}=0} and A / f i A {\displaystyle A/f_{i}A} is flat over R and such that they are compatible.

Greatest common divisor

In mathematics, the greatest common divisor of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For example, the gcd of 8 and 12 is 4. In the name "greatest common divisor", the adjective "greatest" may be replaced by "highest", and the word "divisor" may be replaced by "factor", so that other names include greatest common factor gcf, etc. Historically, other names for the same concept have included greatest common measure. This notion can be extended to polynomials see Polynomial greatest common divisor and other commutative rings see below.

Elementary divisors

In algebra, the elementary divisors of a module over a principal ideal domain occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R {\displaystyle R} is a PID and M {\displaystyle M} a finitely generated R {\displaystyle R} -module, then M is isomorphic to a finite sum of the form M ≅ r ⊕ ⨁ i = 1 l R / q i with r, l ≥ 0 {\displaystyle M\cong R^{r}\oplus \bigoplus _{i=1}^{l}R/q_{i}\qquad {\text{with }}r,l\geq 0} where the q i {\displaystyle q_{i}} are nonzero primary ideals. The list of primary ideals is unique up to order but a given ideal may be present more than once, so the list represents a multiset of primary ideals; the elements q i {\displaystyle q_{i}} are unique only up to associatedness, and are called the elementary divisors. Note that in a PID, the nonzero primary ideals are powers of prime ideals, so the elementary divisors can be written as powers q i = p i r i {\displaystyle q_{i}=p_{i}^{r_{i}}} of irreducible elements. The nonnegative integer r {\displaystyle r} is called the free rank or Betti number of the module M {\displaystyle M}. The module is determined up to isomorphism by specifying its free rank r, and for class of associated irreducible elements p and each positive integer k the number of times that p k occurs among the elementary divisors. The elementary divisors can be obtained from the list of invariant factors of the module by decomposing each of them as far as possible into pairwise relatively prime non-unit factors, which will be powers of irreducible elements. This decomposition corresponds to maximally decomposing each submodule corresponding to an invariant factor by using the Chinese remainder theorem for R. Conversely, knowing the multiset M of elementary divisors, the invariant factors can be found, starting from the final one which is a multiple of all others, as follows. For each irreducible element p such that some power p k occurs in M, take the highest such power, removing it from M, and multiply these powers together for all classes of associated p to give the final invariant factor; as long as M is non-empty, repeat to find the invariant factors before it.

Theta divisor

In mathematics, the theta divisor Θ is the divisor in the sense of algebraic geometry defined on an abelian variety A over the complex numbers by the zero locus of the associated Riemann theta-function. It is therefore an algebraic subvariety of A of dimension dim A − 1.

Linear system of divisors

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a linear system of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space X, O X. Linear system of dimension 1, 2, or 3 are called a pencil, a net, or a web, respectively. A map determined by a linear system is sometimes called the Kodaira map.

Divisoria

Divisoria is a commercial center in between Tondo and Binondo in Manila, Philippines known for its shops that sell low-priced goods and its diverse manufacturing activities. Tutuban Center is situated within the commercial hub along with a night market located in the Centers vicinity. The area is riddled with different bazaars, bargain malls, and a few points of interest.